The k-Generalized Lucas Numbers Close to a Power of 2


AÇIKEL A., Irmak N., Szalay L.

Mathematica Slovaca, cilt.73, sa.4, ss.871-882, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 73 Sayı: 4
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1515/ms-2023-0064
  • Dergi Adı: Mathematica Slovaca
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.871-882
  • Anahtar Kelimeler: Baker method, k-generalized Lucas sequence, LLL reduction
  • Hatay Mustafa Kemal Üniversitesi Adresli: Evet

Özet

Let k ≥ 2 be a fixed integer. The k-generalized Lucas sequence {Ln(k)}n≥0 starts with the positive integer initial values k, 1, 3, ⋯, 2k-1 - 1, and each term afterward is the sum of the k consecutive preceding elements. An integer n is said to be close to a positive integer m if n satisfies | n-m |