Marine antifouling properties of enzyme modified polyaniline coated stainless steel surface


Creative Commons License

Üstükarcı H., Ozyilmaz G., Ozyilmaz A. T.

Enzyme and Microbial Technology, cilt.172, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 172
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.enzmictec.2023.110340
  • Dergi Adı: Enzyme and Microbial Technology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Anahtar Kelimeler: Antifouling, Biofilm, Enzyme, Mediterranean Sea, Polyaniline
  • Hatay Mustafa Kemal Üniversitesi Adresli: Evet

Özet

On solid surfaces immersed in a liquid medium, a biofilm layer which is called biofouling formed over time by organic molecules and microorganisms. It is important to produce new eco-friendly ideas can prevent this undesired phenome. In this study, we focused on the antifouling performance of polyaniline (PANI), whose anticorrosive properties have been already known. The main purpose of this study was to immobilize hydrolytic enzymes that could break down biomolecules and microorganisms and how this would contribute to the antifouling performance of the PANI coating. When α-amylase, DNAse, glucose oxidase, α-chymotrypsin, lipase and pectinase enzymes immobilized into PANI that was synthesized in ammonium oxalate (PANIAO) and sodium salicylate (PANISS) electrolytes, α-amylase containing film (PANISS-A) showed the highest performance (76.5% antifouling activity). The surface properties after keeping in the Mediterranean Sea for 12 days were compared by digital photography, Scanning Electron microscope (SEM) and fluorescence microscope images, also with Energy Dispersive X-Ray (EDX) analysis and crystal violet staining. Carbohydrate and protein amounts and CFU (Colony Forming Units) values of biofilms formed on the surface for bare, PANISS and PANISS-A coupons after keeping 12 days in the Mediterranean Sea were determined. Vibrio species (V.harveyi, V.alginolyticus, V.parahaemolyticus) were detected in the biofilms by Matrix- Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) analysis.