Noise-Induced Dynamics of Bose-Einstein Condensates Under Diverse Potentials


TOZAR A., Alkhattab F.

International Journal of Theoretical Physics, cilt.64, sa.11, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 64 Sayı: 11
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s10773-025-06177-1
  • Dergi Adı: International Journal of Theoretical Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, INSPEC, MathSciNet, zbMATH
  • Anahtar Kelimeler: Bose-Einstein condensation, Finite difference scheme, Numerical methods, Ornstein-Uhlenbeck noise, Stochastic Gross-Pitaevskii equation
  • Hatay Mustafa Kemal Üniversitesi Adresli: Evet

Özet

In this study, we focus on the numerical solutions of the Stochastic Gross-Pitaevskii Equation (SGPE), a critical tool for modelling Bose-Einstein Condensates (BEC) in low-temperature regimes. Using a finite difference scheme, we investigate the dynamics of ultra-cold atomic systems under various external potentials and stochastic influences. The potentials explored include harmonic, periodic, Gaussian, magnetic, dipole, and asymmetric (step-like) scalar potentials, as well as systems with attractive and repulsive interactions. Stability and consistency of the numerical approach are demonstrated through Von-Neumann analysis and mean square consistency tests. Simulations incorporating Ornstein-Uhlenbeck noise provide detailed insights into condensate behaviour under these diverse potentials, highlighting the intricate interplay of stochastic effects and interparticle interactions. Our findings offer a comprehensive numerical framework and results that contribute to advancing both theoretical and experimental physics. The trends we quantify (peak reduction and broadening under noise) align qualitatively with observations in trapped-BEC experiments, underscoring the practical applicability of our numerical framework.