Polymer Science - Series B, cilt.58, sa.4, ss.411-420, 2016 (SCI-Expanded)
Hydrazone substituted oligophenol was synthesized via enzymatic oxidative polymerization of (E)-2-((2-phenylhydrazono)methyl)phenol. Enzymatic polymerization catalyzed by Horseradish peroxidase (HRP) enzyme and H2O2 oxidizer yielded oligophenol with hydrazone functionality on the side-chain. Effects of various factors including solvent system, reaction pH and temperature on the polymerization were studied. Optimum polymerization conditions with the highest yield (84%) and molecular weight (Mn = 8 × 103, DP ≈ 37, PDI = 1.11) was achieved using MeOH/pH 6.0 buffer (1: 1 vol %) at 25°C in 24 h under air. Synthesized oligomer was characterized by 1H and 13C NMR, FTIR, UV–Vis spectroscopy, GPC, cyclic voltammetry and thermogravimetric analyses. The polymerization involved hydrogen elimination from the monomer, and terminal units of the oligomer structure consisted of phenolic hydroxyl (–OH) end groups. The oligomer backbone possessed phenylene and oxyphenylene repeat units. The resulting oligomer was completely soluble in common organic solvents. The oligomer was thermally robust and exhibited 5% mass loss at 375°C and 50% mass loss at 440°C.