Journal of Veterinary Internal Medicine, cilt.35, sa.5, ss.2524-2533, 2021 (SCI-Expanded)
Background: Approaches to the evaluation of pulmonary arterial hypertension (PAH) in premature calves by using lung-specific epithelial and endothelial biomarkers are needed. Objective: To investigate the evaluation of PAH in premature calves with and without respiratory distress syndrome (RDS) by using lung-specific epithelial and endothelial biomarkers and determine the prognostic value of these markers in premature calves. Animals: Fifty premature calves with RDS, 20 non-RDS premature calves, and 10 healthy term calves. Methods: Hypoxia, hypercapnia, and tachypnea were considered criteria for RDS. Arterial blood gases (PaO2, PaCO2, oxygen saturation [SO2], base excess [BE], and serum lactate concentration) were measured to assess hypoxia. Serum concentrations of lung-specific growth differentiation factor-15 (GDF-15), asymmetric dimethylarginine (ADMA), endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and surfactant protein D (SP-D) were measured to assess PAH. Results: Arterial blood pH, PaO2, SO2, and BE of premature calves with RDS were significantly lower and PaCO2 and lactate concentrations higher compared to non-RDS premature and healthy calves. The ADMA and SP-D concentrations of premature calves with RDS were lower and serum ET-1 concentrations higher than those of non-RDS premature and healthy calves. No statistical differences for GDF-15 and VEGF were found among groups. Conclusions and Clinical Importance: Significant increases in serum ET-1 concentrations and decreases in ADMA and SP-D concentrations highlight the utility of these markers in the diagnosis of PAH in premature calves with RDS. Also, we found that ET-1 was a reliable diagnostic and prognostic biomarker for PAH and predicting mortality in premature calves.