A potential new way to facilitate HCV elimination: The prediction of viremia in anti-HCV seropositive patients using machine learning algorithms


Bal T., DİRİCAN E.

Arab Journal of Gastroenterology, cilt.25, sa.2, ss.223-229, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ajg.2024.03.003
  • Dergi Adı: Arab Journal of Gastroenterology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.223-229
  • Anahtar Kelimeler: Alanine aminotransferase, Hepatitis C virus, Machine learning, Random forest, Viremia, XGBoost
  • Hatay Mustafa Kemal Üniversitesi Adresli: Evet

Özet

Background and study aims: The present study was undertaken to design a new machine learning (ML) model that can predict the presence of viremia in hepatitis C virus (HCV) antibody (anti-HCV) seropositive cases. Patients and Methods: This retrospective study was conducted between January 2012-January 2022 with 812 patients who were referred for anti-HCV positivity and were examined for HCV ribonucleic acid (HCV RNA). Models were constructed with 11 features with a predictor (presence and absence of viremia) to predict HCV viremia. To build an optimal model, this current study also examined and compared the three classifier data mining approaches: RF, SVM and XGBoost. Results: The highest performance was achieved with XGBoost (90%), which was followed by RF (89%), SVM Linear (85%) and SVM Radial (83%) algorithms, respectively. The four most important key features contributing to the models were: alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB) and anti-HCV levels, respectively, while “ALB” was replaced by the “AGE” only in the XGBoost model. Conclusion: This study has shown that XGBoost and RF based ML models, incorporating anti-HCV levels and routine laboratory tests (ALT, AST, ALB), and age are capable of providing HCV viremia diagnosis with 90% and 89% accuracy, respectively. These findings highlight the potential of ML models in the early diagnosis of HCV viremia, which may be helpful in optimizing HCV elimination programs.